
Software development life cycle

Software is developed through a series of steps. The sequence of steps is referred as

the software development life cycle (SDLC).

There are several software development life cycle models. The simplest of them is

the waterfall model:

The software development cycle itself is endless. We may from any stage go back to

an earlier stage.

The stages are not absolutely separated from each other. For example, rather often the

coding and testing are performed concurrently: if a modul seems to be ready, it will

tested immediately. Design is partly performed by coding tools (specifying the

function prototypes, etc.).

Traditional approach: partitioning
The software product we have to impement gets some input data and from it generates

some output data. So we may depict it as a box with some input arrows and some output

arrows.

We divide the initial box into several smaller boxes,

then repeat it with each smaller box, etc. Thus we

get the partition of our softwere into modules. At last

we attach to each module an accountable developer

or a group of developers and the coding may start.

The main problem: the initial partition mirrors exactly and only the initial task. Sometimes

even small changes in the problem specification can make it almost useless. The software

modules written according to the specific partition are often so tightly connected to it that

their usage in other projects without significant changes is not possible.

Objects and classes
In object-oriented programming (OOP) an object is a software model of real world objects

(students, buildings, cars, etc.) as well as abstract concepts (stack, screen window, matrix,

etc.).

Any real-world or abstract object has:

• State – set of characteristics describing it in a specific moment (color, weight,

dimensions, etc.).

• Behavor – set of actions the object is able to perform.

Popular example: the state of a dog is specified by its name, color of fur, breed, etc. The

behavor is running, barking, biting, etc.

Consequently, the software model of a real-world or abstract object must contain:

• Data members (in OOP mostly called attributes or member variables) for storing the

state. The attributes have values: numbers, words, sets of numbers, long texts, pointers

to other objects, etc.

• Functions (in OOP mostly called methods) to implement the behavor.

Objects having the same set of attributes (the values may be, of course, different) and the

same set of methods belong to the same class. In class declaration we have to list the

attributes and implement the code of methods. Classes as generalizations of objects are the

building blocks of OOP program. The objects are just instances of their class. Each object

is a member of a certain class.

Objects and classes in C++ (1)
Let us take a simple C struct:

struct Date

{

 int Day;

 int iMonth; // range 1…12, prefix i is to emphasize that month is an integer

 int Year;

};

It is a software model of abstract concept "date". But it presents just the state but not behavor.

Let us add a method and declare the class:

class Date

{

 int Day;

 int iMonth;

 int Year;

 char sDate[12]; // for date as string in format dd-mmm-yyyy

 void ToString(); // prototype of function that fills sDate

}; // do not forget the semicolon

In C++ a class is mostly implemented with 2 files: class_name.h for declaration and

class_name.cpp for implementation of methods.

Objects and classes in C++ (2)
void Date::ToString() // scope operator, we have to define that this function belongs to Date

{

 const char MonthNames[12][4] =

 {

 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

 };

 sprintf_s(sDate, 12, "%02d %s %d", Day, MonthNames[iMonth - 1], Year);

} // sprintf_s instead of printing stores the string in buffer, formatting is as in printf

 // non-secure sprintf does not have argument presenting the length of output buffer

Turn attention that the function uses the members of its own class (Day, iMonth, sDate, Year)

in the same way as the local variables (MonthNames).

Create an object:

Date d; // or class Date d; but the compiler itself understands what is Date

As in C, we get memory (here 24 bytes). Operator for accessing class members is also as in C

(i.e. point). But

d.Day = 5; // error

This is because in class all the members are by default private. A private member can be

accessed only by functions from the same class (like ToString() in our example). In other

terms, a private member is encapsulated.

To allow access by any function we have to declare them as public.

Objects and classes in C++ (3)
class Date

{

public: // access modifier

 int Day, iMonth, Year;

 char sDate[12];

 void ToString();

};

Now:

Date d1, d2;

d1.Day = 5; d1.iMonth = 3; d1.Year = 2019;

d2.Day = 1; d2.iMonth = 5; d2.Year = 2019;

To get date as string write:

d1.ToString();

printf("%s\n", d1.sDate); // prints 05-Mar-2019

To call a member function we have to specify the corresponding object. d1.ToString() instructs

function ToString() to use attribute values set for object d1. Similarly:

d2.ToString(); // uses values set to attributes of d2

printf("%s\n", d2.sDate); // prints 01-May-2019

If we write just ToString(); the compiler supposes that we have a function ToString() that is not

a class member (like printf)

Objects and classes in C++ (4)
Working with public data members is a bad idea. For example, if we do not forbid the user to

set the value of member iMonth out of range 1…12, our ToString() may crash. To shield the

data members they are mostly declared as private. Their accessing is performed by accessor

functions.

class Date

{

private: // access modifier, valid until the next access modifier or until the end of declaration

 int Day,

 iMonth,

 Year;

 char sDate[12];

public:

 int GetDay(); // traditionally, the names of accessor functions start with words Get ans Set

 void SetDay(int);

 int GetMonth();

 void SetMonth(int);

 int GetYear();

 void SetYear(int);

 void ToString();

 char *GetDateString(); // no set function for sDate

};

Objects and classes in C++ (5)

In most cases the get-functions are very simple: they just return the value of attribute:

int Date::GetDay()

{

 return Day;

}

int Date::GetMonth()

{

 return iMonth;

}

int Date::GetYear()

{

 return Year;

}

char *Date::GetDateString()

{

 return &sDate[0];

}

Objects and classes in C++ (6)

Rather often the set-functions must check their input:

void Date::SetMonth(int m)

{

 if (m < 1 || m > 12)

 throw "Wrong month";

 iMonth = m;

}

void Date::SetYear(int y)

{

 if (y < 0)

 throw "Wrong year";

 Year = y;

}

Checking the day value is more complicated. For example, if the month is February, its max

value may be 28 or 29 (leap years). Therefore it is wise to add into our class one more

function:

private:

int IsLeap();

The users of our class do not need this function and must not know anything about it. If we

declare it as private, only the functions of our class can call it.

Objects and classes in C++ (7)
void Date::SetDay(int d)

{

 if (d < 1 || d > 31)

 throw "Wrong day";

 if ((iMonth == 4 || iMonth == 6 || iMonth == 9 || iMonth == 11) && d == 31)

 throw "Wrong day";

 if (iMonth == 2)

 {

 if (IsLeap(Year))

 {

 if (d > 29)

 throw "Wrong day";

 }

 else

 {

 if (d > 28)

 throw "Wrong day";

 }

 }

 Day = d;

}

Objects and classes in C++ (8)
int Date::IsLeap(int y)

{ // see https://www.programiz.com/c-programming/examples/leap-year

 if (Year % 4 == 0)

{

 if (Year % 100 == 0)

 {

 if (Year % 400 == 0)

 return 1;

 else

 return 0;

 }

 else

 return 1;

 }

 else

 return 0;

}

https://www.programiz.com/c-programming/examples/leap-year

Objects and classes in C++ (9)

Now we can operate with objects of class Date as shown in the following examples:

Date d1, d2, d3;

d1.SetMonth(3); d1.SetYear(2019); d1.SetDay(5);

d2.SetMonth(5); d2.SetYear(2019); d2.SetDay(1);

printf("%d\n", d1.GetYear());

d3.SetMonth(d2.GetMonth() + 1);

or using the dynamic memory allocation:

Date *pd1, *pd2, *pd3;

pd1 = new Date;

pd2 = new Date;

pd3 = new Date;

pd1->SetMonth(3); pd1->SetYear(2019); pd1->SetDay(5);

pd2->SetMonth(5); pd2->SetYear(2019); pd2->SetDay(1);

printf("%d\n", pd1->GetYear());

pd3->SetMonth(pd2->GetMonth() + 1);

delete pd1;

delete pd2;

delete pd3;

Objects and classes in C++ (10)
If we define an object of the current implementation of class Date, we can call SetDay() only

after calls to SetMonth() and SetYear(). This is because there is no any initialization of data

members and the values of iMonth and Year right after allocation of memory are occasional

numbers. To solve this problem we may declare SetDay(), SetMonth() and SetYear() as private

and add into class declaration a new public function:

public:

void SetDate(int, int, int);

void Date::SetDate(int d, int m, int y)

{

 SetYear(y);

 SetMonth(m);

 SetDay(d);

}

Usage:

Date d;

d.SetDate(5, 3, 2019);

Date *pd = new Date;

pd->SetDate(5, 3, 2019);

Objects and classes in C++ (11)
So we have now class:

class Date

{

private:

 int Day, iMonth, Year;

 char sDate[12];

public:

 void SetDate(int, int, int);

 int GetDay();

 int GetMonth();

 int GetYear();

 void ToString();

 char *GetDateString();

private:

 int IsLeap(int);

 void SetDay(int);

 void SetMonth(int);

 void SetYear(int);

};

Objects and classes in C++ (12)
Instead of defining an object (i.e. allocating memory for its data members) and then calling

function(s) to initialize it we almost always use specific member functions called constructors:

• The name of constructor matches the name of class.

• The constructor does not have output value (i.e. formally it returns nothing). But it may

throw exceptions.

• The constructor is always public.

• The constructor may have arguments.

• A class may have several constructors, but in that case their sets of arguments must be

different.

• If the programmer has not defined his own constructor, the compiler automatically creates

the default constructor that has no arguments and initializes nothing. On our previous slides

class Date had such a constructor.

• If the programmer has defined at least one constructor, the default constructor (actually a

function with empty body) is not created. If such an additional constructor is still needed,

the programmer must write it himself.

• Defining of an object as local or global variable or allocating for it dynamical memory is

always accompanied with automatical call to constructor. On our previous slides

Date d;

Date *pd = new Date;

meant that the default constructor was called. malloc() does not call constructor.

Objects and classes in C++ (13)
class Date

{

private:

 int Day, iMonth, Year;

 char sDate[12];

public:

 Date(); // default constructor, here we need to create it ourselves

 Date(int, int, int); // initializing constructor

 void SetDate(int, int, int); // needed if we want to change the values later

 int GetDay();

 int GetMonth();

 int GetYear();

 void ToString();

 char *GetDateString();

private:

 int IsLeap(int);

 void SetDay(int);

 void SetMonth(int);

 void SetYear(int);

};

Objects and classes in C++ (14)
Date::Date()

{ // empty constructor, also the default constructor

}

Date::Date(int d, int m, int y)

{

 SetYear(y);

 SetMonth(m);

 SetDay(d);

}

Now:

Date d1; // the default constructor is called, no initializations. No parenthesis here!

Date week1[7]; // the default constructor is called 7 times, no initializations

Date *pd1 = new Date; // the default constructor is called, no initializations

Date *pWeek1 = new Date[7]; // the default constructor is called 7 times, no initializations

Those 4 variable declarations are correct only if the default constructor is explicitly

defined or if the programmer has not defined no one constructor.

Date d2(5, 3, 2019); // the initializing constructor is called

Date *pd2 = new Date(5, 3, 2019);

but

Date week2(5, 3, 2019)[7]; // error

Objects and classes in C++ (15)
The constructor arguments may have default values, for example:

 class Date

{

 ………………..

public:

 Date(int = 1, int = 1, int = 2020);

 ………………..

};

Now:

Date d; // if the default constructor is not defined, we get Jan 1, 2020

 // no parenthesis here!

 // error if the default constructor is defined (ambiguity)

Date *pWeek = new Date[7];

 // if the default constructor is not defined, we get 7 times Jan 1, 2020

 // error if the default constructor is defined (ambiguity)

Objects and classes in C++ (16)
The constructor without arguments (default constructor) may be not empty, for example:

 Date::Date()

{

 time_t Now; // typedef time_t is declared in time.h

 time(&Now); // reads the system timer

 struct tm Tm; // struct tm is declared in time.h, details will be discussed later

 localtime_s(&Tm, &Now);

 Day = Tm.tm_mday; // in struct tm 1...31

 iMonth = Tm.tm_mon + 1; // in struct tm 0…11

 Year = Tm.tm_year + 1900; //in struct tm current year - 1900

}

Now:

Date d1; // d1 presents the current date

Date *pWeek = new Date[7]; // 7 times the current date

Objects and classes in C++ (17)
Objects defined as local or global variables are removed automatically. Objects located on

heap (region for dynamical memory allocation) are removed when we apply operator

delete. If some of the attributes are pointers to memory fields then it may happen that some

of the member functions have allocated the memory but have not released it. For example,

our Date class may have a buffer for string:

class Date

{

private:

 char *pBuf;

…………….

};

The memory for buffer is allocated when the date is converted into string. To ensure that

the buffer will disappear together with the object we have to write a specific function called

destructor:

• The name of destructor matches the name of class, but has prefix ~ (for example ~Date).

• The destructor has neither output value nor arguments.

• The destructor is always public.

• The destructor is always called automatically. The programmer has no right to call it.

• The task of destructor is to release the memory fields that were not released earlier, close

the I/O connections, etc.

Objects and classes in C++ (18)
class Date

{

private:

 char *pBuf = 0; // initial value for attributes, discussed later

public:

 Date(int, int, int);

 ~Date();

…………….

};

Date::~Date()

{

 if (pBuf) // this cheking is absolutely necessary

 delete pBuf;

}

To avoid releasing memory that is already released or not allocated at all (i.e. to avoid

crashes), the initial values of pointer member variables must be zero. If some of the

member functions releases memory, it must also set the pointer to zero.

Objects and classes in C++ (19)
Short member functions may be declared as inline functions. Here it means that they are

declared and defined in class declaration (i.e. in *.h file):

class Date {

private:

 int Day, iMonth, Year;

 char sDate[12];

public:

 Date() { } // inline

 Date(int, int, int);

 void SetDate(int, int, int);

 int GetDay() { return Day; } // inline

 int GetMonth() { return iMonth; } // inline

 int GetYear() { return Year; } // inline

 void ToString();

 char *GetDateString() { return &sDate[0]; } // inline

private:

 int IsLeap(int);

 void SetDay(int);

 void SetMonth(int);

 void SetYear(int);

};

Objects and classes in C++ (20)

Normally the inline member functions do not need more than three or four rows of code.

The place of long member functions is in *.cpp file.

Sometimes in small classes all the functions may be declared as inline and thus *.cpp file is

not needed at all.

Some programmers declare all his functions without any regard to their length as inline. It

is not recommended.

Arrays of objets

Let us have

Date *pWeek = new Date[7];

for (int i = 0; i < 7; i++)

{

 (pWeek + i)->SetDate(4 + i, 3, 2020);

}

delete[] pWeek;

To release memory occupied by an array of objects it is better to use delete[] instead of

delete. It ensures that the destructors for each element of array are called.

Aggregation (1)
Let us have class

class Project

{

private:

 char *pTitle;

 Date Deadline;

 ………….

public:

 Project(const char *p) // calls automatically constructor Date()

 { // correct if Date has constructor without arguments or constructor in which

 // all the arguments have default values

 int n;

 pTitle = new char[n = strlen(p) + 1]; // destructor must release it!

 strcpy_s(pTitle, n, p);

 }

 ………………………..

};

One of the attributes is object of class Date or in other words, class Date is aggregated into

class Project.

Aggregation (2)
If we want also the set the deadline, we have to add one more constructor:

Project::Project(const char *p, int d, int m, int y) : Deadline(d, m, y)

{ // calls automatically constructor Date(int, int, int)

 int n;

 pTitle = new char[n = strlen(p) + 1];

 strcpy_s(pTitle, n, p);

 }

Project:: ~Project()

{// destructor of the aggregated class is called automatically

 delete pTitle;

} // here the checking of pTitle is omitted because the meory was allocated by constructor

Now suppose that

class Project

{

private:

 Date *pDeadline;

 ………….

};

This is also aggregation but without automatic call to the constructor of aggregated class.

The constructor of Project must explicitly allocate memory for deadline.

Aggregation (3)
Project::Project(const char *p, int d, int m, int y)

{

 int n;

 pTitle = new char[n = strlen(p) + 1];

 strcpy_s(pTitle, n, p);

 pDeadline = new Date(d, m, y);

 }

Project::Project(const char *p)

{

 int n;

 pTitle = new char[n = strlen(p) + 1];

 strcpy_s(pTitle, n, p);

 pDeadline = new Date;

 }

Project:: ~Project()

{ // checking not needed because memory is allocated in constructor

 delete pTitle;

 delete pDeadline;

}

Inheritance (1)
Let us have an 100% implemented class:

class Person

{

 char *pName;

 char * pAddress;

 Date Birthdate;

 char *pNationality;

 long long int Code;

 …………………

};

We need to create class Student. As all the software implemented in Person is applicable

and needed in Student, we may use aggregation:

class Student

{

 Person *pPersonalData;

 …………………. // speciality, examinations etc.

};

Inheritance (2)
Each student has a lot of common attributes. But for example a future engineer must work

as intern in industry, a future trainer must have some achievements in sport, a future actor

must have some role in theater or film, etc. Those specific attributes must also be presented

in the class declaration. But

class FutureEngineer

{

 Student *pStudent;

 ……………..

};

is a very awkward solution because we have now data on three levels: FutureEngineer,

Student and Person, for example in class FutureEngineer to get the name we have to write

 pFutureEngineer->GetStudent()->GetPersonalData()->GetName();

OPP has better solution: derive a new class from an existing class - the derived class

inherits all the attributes and methods of the base class and may use them as its own

attributes and methods. If we have derived Student from Person, attributes pName,

pAddress etc. become automatically members of Student. If we continue in this way and

derive FutureEngineer from Student, the FutureEngineer inherits all the attributes and

methods from Student as well as from Person. So, attribute pName and method GetName()

implemented in Person may be used in FutureEngineer in the same way as the attributes

and methods declared in FutureEngineer itself, for example

printf("%s\n", pFutureEngineer->GetName());

Inheritance (3)
To declare a derived class write:

class derived_class_name : deriving_mode base_class_name

{ …………………. };

There are three deriving modes: public (used mostly), private and protected. Example:

class Employee {

 char *pName; // private by default

 public:

 Employee() { pName = 0; }

 ~Employee() {

 if (pName)

 delete pName;

 }

 const char *GetName() { return pName; }

 void SetName(const char * p) {

 if (pName)

 delete pName; // remove the current name (if exists)

 int n;

 pName = new char[n = strlen(p) + 1];

 strcpy_s(pName, n, p);

 }

};

Inheritance (4)
class HourlyEmployee : public Employee

{

 int HourlyWage;

public:

 HourlyEmployee(int hw) { HourlyWage = hw; }

 int ToPay(int hours) { return hours * HourlyWage; }

};

Now:

HourlyEmployee *pJohn = new HourlyEmployee(10);

 // constructor of Employee is called automatically

pJohn->SetName("John Smith");

 // SetName() is now also the member of HourlyEmployee

printf("%s gets $%d per week\n", pJohn->GetName(), pJohn->ToPay(40));

 // GetName() was declared in Employee

 // ToPay() was declared in HourlyEmployee

delete pJohn;

 // destructor of Employee is called automatically

Inheritance (5)
The base class constructor is called automatically and always before the derived class

constructor. The parameter list of derived class constructor must also contain the parameters

for the base class constructor:

derived_class_name :: derived_class_name (full_list_of_parameters) :

 base_class_name(sublist_of_base_class_constructor_parameters)

{ constructor_body }

If the base class constructor does not need parameters, the derived class constructor

is simply written as

derived_class_name :: derived_class_name (full_list_of_parameters)

{ constructor_body }

Example: rewrite the constructor of class Employee:

Employee(const char * p)

 {

 int n;

 pName = new char[n = strlen(p) + 1];

 strcpy_s(pName, n, p);

 }

Now we have to rewrite the constructor of HourlyEmployee too:

HourlyEmployee(int hw, const char *p) : Employee(p) { HourlyWage = hw; }

Inheritance (6)
The derived class destructor is always called before the base class destructor.

In our example the base class Employee has destructor, but there is no need to write a

destructor for derived class HourlyEmployee. But it does not mean that the destructor of

Eployee is not called.

If the authors of base class and derived class are different (and rather often the programmer

implementing derived class has no access to the code of base class, he has only the *.lib or

*.obj file and a document describing the public attributes and methods), the member names

of base class and derived class may match. Suppose that the base class bbb has attribute Attr

ja method void fun(). Suppose that the derived class ddd has also attribute Attr ja method

void fun(). Then in software written for class ddd:

• To access Attr and fun() from class ddd write simply Attr and fun(). It means that if we do

not have access to base class code, we need not worry about matching names.

• To access Attr and fun() from class bbb write bbb::Attr and bbb::fun().

Futher, suppose that the application has global variable Attr ja global function void fun()

(they are not members of some of the classes). To access them write ::Attr and ::fun().

Inheritance (7)

Users of a class cannot access private members. As the programmer implementing a derived

class is also the user, we have a paradoxical situation: private members of base class are also

members of derived class, but their usage is impossible. To solve the problem in OOP an

additional access mode is introduced: a class member may be protected.

The private members are accessible only by the member functions of the same class.

Although they are inherited by derived classes, the member functions declared in derived

classes have no access to them.

The protected members are accessible for the member functions of the same class as well as

for the member functions of derived classes. They are not accessible for functions outside

the current inheritance chain.

The public members are accessible everywhere without any restrictions.

In the public inheritance class ddd : public bbb { … } the members of the base class keep

their access level also in the derived class.

In the protected inheritance class ddd : protected bbb { … } the public members of the base

class become protected in the derived class, the others keep their access level.

In the private inheritance class ddd : private bbb { … } the public and protected members of

the base class become private in the derived class, the private members stay private.

Consequently, the members of classes derived from ddd cannot access members of bbb.

Polymorphism (1)
Suppose we want to implement a package of functions for drawing figures consisting of

geometric shapes like circle, triangle, rectangle, polygon, etc. All those figures have several

attributes that are common for all of them, for example the color, width and type (continious,

dashed) of line used for draw them, color to fill them, etc. They all have at least one point

specifying their location. So we can create a class:

class Shape

{

 protected:

 int x, y,

 LineColor, FillColor, // for example like #define BLACK 0 #define RED 1

 LineWidth,

 LineType, // for example like #define CONTINIOUS 0 #define DASHED 1

 ….. ………………………………………..;

 public:

 Shape() { }

 Shape(int i1, int i2, …..) { x = i1; y = i2; …… }

 …………………………………

};

Shape is an abstract class: a base class concentrating the common features of its successor

classes. Often some or even all the methods of an abstract class are empty. C++ allows to

declare objects of abstract classes, but usually nobody does it.

Polymorphism (2)
The operations we want to perform with shapes are drawing, deleting, scaling, moving, etc.

The algorithms of those operations are also common for all of the shapes, so we can add to

our abstract class:

class Shape

{

 ………………..

 void Draw() { } // empty because shape is just an abstraction

 void Delete() {

 int c1 = LineColor, c2 = FillColor;

 LineColor = FillColor = ::GetBackgroundColor();

 Draw();

 LineColor = c1; FillColor = c2;

 }

 void Move(int newX, newY) {

 Delete();

 x = newX; y = newY;

 Draw();

 }

 ………………………..

};

Polymorphism (3)

Now we can derive our actual shapes, for example:

class Circle : public Shape

{

 int radius;

 public:

 Circle(int x, int y, int r, …..) : Shape(x, y, …..) { radius = r; }

 void Draw() { ……………………. } // overrides Draw() from base class

};

Circle *pCircle = new Circle(0, 0, 100);

pCircle->Draw(); // works, we can see the circle on screen

pCircle->Delete(); // does not work, the circle is still there

pCircle->Move(10, 10); // does not work, nothing is moved

The reason is that Delete() and Move() inherited from Shape call Draw() defined in Shape,

but is does nothing.

The problem is: how to replace empty Draw() from Shape called in methods Delete(),

Move(), etc. that are also from Shape with calls to Draw() from Circle when we are handling

circles or with calls to Draw() from Rectangle when we are handling rectangles, etc.

Polymorphism (4)
Solution: declare Draw() as a virtual function:

virtual void Draw();

We have Draw() in base class and its overriding Draw() methods in derived classes. During

application building, when the call to Draw() is encountered, the compiler and / or linker

meet a problem: which Draw() to bind. They can do it (early or static binding) or left the

question open (late or dynamic binding). In the last case the method to call is selected when

the application is running.

If a function is declared as virtual, it and all its overriding functions will be bound

dynamically. The method to call (Draw() from Circle or Draw() from Rectangle) depends on

the type of object associated with that call. For example:

pCircle->Delete();

call to method Delete() from Shape is associated with object of type Circle. Delete() calls

Draw() but as Draw() is virtual, bindings were open. As pCircle points to Circle, in runtime

binding the call will be bound to Draw() from Circle. If on next row is expression

pRectangle->Delete();

then when executing it the call to Draw() will be bound to Draw() from Rectangle.

Generally, C++ polymorphism means that a call to a member function will cause a different

function to be executed depending on the type of object that invokes the function.

Polymorphism (5)

Why the selection which of the overrided methods to call is performed in runtime? The

problem is that:

Circle *pCircle = new Circle(0, 0, 100, ….);

Rectangle *pRectangle = new Rectangle(10, 20, …..);

Shape *pShape;

if (….)

 pShape = pCircle; // without explicit cast!

 // it is correct because all the attributes and methods from Shape are

 // also the attributes and methods of Circle.

else

 pShape = pRectangle;

pShape->Delete();

 // correct but during building we do not know to which object pShape will point

delete pShape; // if the destructor of Shape is virtual, it is called and the destructor of Circle

 // or Rectangle also. If not then due to early binding only the destructor

 // of Shape is called

Recommendation: always include a virtual destructor into your class, even if it empty

Mark that

pCircle = pShape; // error

pCircle = (Circle *)pShape; // formally correct, but may lead to crash

Polymorphism (6)

If a virtual function has return value, it cannot be empty:

virtual int fun() { } // error

So we have to return something, for example

virtual int fun() { return 0; }

It is better to use pure virtual functions in which instead of body we write =0;

virtual int fun() = 0;

If a class contains pure virtual functions, then:

1. It is not possible to create objects of that class.

2. Classes derived from that class must implement the pure virtual functions as non-pure

functions or define them once more as pure functions.

Remark that for example

virtual void fun() { }

is not a pure virtual function.

	Slide 1: Software development life cycle
	Slide 2: Traditional approach: partitioning
	Slide 3: Objects and classes
	Slide 4: Objects and classes in C++ (1)
	Slide 5: Objects and classes in C++ (2)
	Slide 6: Objects and classes in C++ (3)
	Slide 7: Objects and classes in C++ (4)
	Slide 8: Objects and classes in C++ (5)
	Slide 9: Objects and classes in C++ (6)
	Slide 10: Objects and classes in C++ (7)
	Slide 11: Objects and classes in C++ (8)
	Slide 12: Objects and classes in C++ (9)
	Slide 13: Objects and classes in C++ (10)
	Slide 14: Objects and classes in C++ (11)
	Slide 15: Objects and classes in C++ (12)
	Slide 16: Objects and classes in C++ (13)
	Slide 17: Objects and classes in C++ (14)
	Slide 18: Objects and classes in C++ (15)
	Slide 19: Objects and classes in C++ (16)
	Slide 20: Objects and classes in C++ (17)
	Slide 21: Objects and classes in C++ (18)
	Slide 22: Objects and classes in C++ (19)
	Slide 23: Objects and classes in C++ (20)
	Slide 24: Arrays of objets
	Slide 25: Aggregation (1)
	Slide 26: Aggregation (2)
	Slide 27: Aggregation (3)
	Slide 28: Inheritance (1)
	Slide 29: Inheritance (2)
	Slide 30: Inheritance (3)
	Slide 31: Inheritance (4)
	Slide 32: Inheritance (5)
	Slide 33: Inheritance (6)
	Slide 34: Inheritance (7)
	Slide 35: Polymorphism (1)
	Slide 36: Polymorphism (2)
	Slide 37: Polymorphism (3)
	Slide 38: Polymorphism (4)
	Slide 39: Polymorphism (5)
	Slide 40: Polymorphism (6)

